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Minimum Polynomials and Control in Linear Systems*
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Given the constant coefficient system x = Ax + Bu, relationships are established among the minimum
polynomial (with respect to A) of the range of B, the degree and null space of this polynomial, the rank of the
controllability matrix and the degree of the minimum polynomial of A. These relations lead to a simple proof of a
theorem on reduction of control.
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1. Introduction

Given a set of vectors B = {by, by, . . . , b,} and a square matrix A, we consider the following objects:
The minimum polynomial ¢(A) of the linear span of B; the dimension, p, of the A-invariant subspace
generated by B; and the dimension, v, of the null space of ¢p(4). Three lemmas are given which relate the
degree of ¢, the degree of the minimum polynomial of A, and the quantities p and v.

The motivation and natural context for the lemmas is linear control theory. The lemmas are used to prove
a theorem in control theory. The result is known but the proof here is very simple as well as elementary
(which is not the same thing).

Both the concept and language of controllability matrices and controllable subspaces have recently
appeared frequently [1, 10, 12, 13]' in the context of abstract linear algebra. Thus the lemmas of this paper
are of possible interest in their own right.

2. Preliminaries

In what follows the underlying vector space is the set of all complex n-tuples. All matrices considered
have complex entries. For any matrix M we denote by R(M), p(M) and N(M) the range, rank (dimension of
the range) and null space respectively. For any column vector y we denote by y* the conjugate transpose of
y. Employing classical terminology, we call a square matrix nonderogatory whenever the minimum
polynomial of A coincides with the characteristic polynomial. Such a matrix is sometimes called cyclic [7].
A nonderogatory matrix can be characterized by its elementary divisor structure or by its Jordan form (e.g.,
see [11] p. 13). It is easy to see that a matrix is nonderogatory if and only if the characteristic polynomials of
its Jordan block are pairwise relatively prime. Equivalently, a matrix is nonderogatory if and only if distinct
Jordan blocks involve distinct roots of the characteristic polynomial. In the literature of control theory this
latter property is often invoked (e.g., see [8], p. 86) and the term nonderogatory not used at all.

Given a square matrix A and a vector v, the minimum polynomial of v with respect to A is that monic
polynomial, p, of minimal degree such that p(A)v = 0. When the matrix A is understood or clear from
context we simply refer to the minimum polynomial of a vector. The minimum polynomial of v is clearly
unique and it divides without remainder any polynomial which annihilates v [2, 6, 7]. In principle the
minimum polynomial of v is constructed as follows: consider the sequence defined by vo = v, v; = Avi_; =

Alv,i = 1,2, 3, . ... There will be a first vector which is linearly dependent on the preceding ones. Let it
be vg. Then for some scalars a, oy, . . . , &, not all zero with o = 1, we have agvy + ayv; + ... +
O 1Vs—1 + vg = p(A) v = 0, where p(A) = ap + a,A + . . . + ag_;A*"' + A%. Thus p(A) annihilates v and

by construction is the monic polynomial of least degree which does so.

Given a subspace S, the minimum polynomial of S (with respect to a matrix A) is the monic polynomial, w,
of least degree such that w(A)x = 0, for each x€S. If we determine the minimum polynomial for each vector
of a basis set in S, then clearly the least common multiple of these polynomials is the minimum polynomial
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of S. The minimum polynomial of a subspace S, since it is an annihilating polynomial for each vector in S,
contains as a divisor the minimum polynomial of every vector in S.

It is a standard theorem [2, 6, 7, 9] that given an n-square matrix A, there exists in n-space a vector
whose minimum polynomial coincides with the minimum polynomial of A (which, of course, is the minimum
polynomial of the entire space). Some of these proofs [2] [6], but not others [7] [9], are easily adapted to
prove that in any proper subspace there exists a vector whose minimum polynomial coincides with the
minimum polynomial of the subspace. This is a result which we will need in what follows. Recently [5] an
elegant proof has been given but the proof pivots on a quite technical lemma. The proof (for the whole space)
in [6] is, characteristically, extremely short and it draws only on the concepts discussed in this section. For
completeness, we give here the (trivial) modification which adapts this proof to a (possibly) proper subspace
and we render the logical sequence somewhat less succinct.

THEOREM 1: Let S be any subspace and A a given square matrix. Then there exists a vector v€S such that
the minimum polynomial of v is the minimum polynomial of S.

Proor (Householder): We assume the dimension of S to be two or more, since otherwise the theorem is
obvious. Let v€S be a vector whose minimum polynomial, f, is of maximal degree in S. Let u€S be any
vector, linearly independent of v, with minimum polynomial g. Then w, the least common multiple of f and
g, annihilates every vector in the (u, v)-plane and thus contains as divisor the minimum polynomial of every
vector in the (u, v)-plane. But w has finitely many divisors and thus there must exist in the (u, v)-plane
independent vectors a and b each with the same minimum polynomial, h. Thus, i annihilates every vector
in the (a, b)-plane which is the (u, v)-plane. In particular h annihilates v. As an annihilating polynomial of
v, h is divisible by f and hence degree h = degree f. But as the minimum polynomial of a vector in S,
degree h = degree f, since the degree of f is maximal. Thus /' = h. It follows that f annihilates every vector
in the (u, v)-plane, and since u was arbitrary (so long as it was not a multiple of v) f annihilates S. Plainly no
polynomial of lesser degree can do so, and f is the minimum polynomial of S.

A linear, constant coefficient system

x = Ax + Bu, (1)

where A is n-square and B is nxr, is said to be (completely) controllable if for each pair of vectors a, b there
exists a control vector u such that x =aatt = 0 and x = b att = T, for some finite 7. The system (1) is
controllable if and only if the matrix

C = [B, AB, A®B, ---, A"'B] )

has rank n. The matrix C is defined as the controllability matrix and its range R(C) as the controllability
space. The controllability space is obviously the smallest subspace, invariant under A, containing R(B). For,
we observe that any A-invariant subspace containing R(B) contains each column of C. When the system (1)
is controllable (not controllable) it is sometimes said that (4,B) is controllable (not controllable) and we use
this terminology.

3. Lemmas and Theorem

Consider an n-square matrix A and an nxr matrix B. Let ¢ be the minimum polynomial, with respect to A,
of the subspace R(B) and the degree of ¢ be d. We denote by N(¢) the null space of ¢4) and denote the
dimension of N(¢) by v. We denote the degree of the minimum polynomial of A by m. The matrix C is
defined as in (2).

LEMMA 1:
v=pC) =d =m.

PRrOOF: Let xeN(¢p). Then ¢p(4)Ax = A dp(A)x = 0 and hence Ax € N(¢p). Thus N(¢) is an A-invariant
subspace and it clearly contains R(B) which ¢(A) annihilates. But R(C) is the smallest such subspace and
we have R(C) C N(¢) and hence » = p(C). By Theorem 1, there is at least one vector, b, in R(B) whose

minimum polynomial coincides with ¢. Let this vector be augmented to a basis for R(B) and let B be the
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matrix whose columns are these basis vectors. If C = [é, AB, -+, A""lé], then p(C) = p((:'), since the
columns of C and of € clearly span the same subspace. But € has at least d linearly independent columns,
namely b, Ab, -+, A% 'b, since the minimum polynomial of b is of degree d. Thus we have p(C) = p(é) =
d. Finally, it is trivial that d never exceeds m and this completes the proof.

LEMMA 2: We have v = nif and only if d = m.
ProoF: By Lemma 1 and the standard rank-nullity Theorem we have

p(C)=n—pld)=v 3)

where p(¢) is the rank of ¢A). From this inequality, v = n implies p(¢) = 0 or that ¢4) = 0. But this
requires d = m. For, ¢{A) = 0 means that ¢ is divisible by ¥ the minimum polynomial of A while the
degree, d, of ¢ never exceeds m. Conversely assume d = m. We observe that WV is always divisible by ¢.
For, ¥ annihilates all of R (B), is thus divisible by the minimum polynomial of every vector in R (B) but, by
Theorem 1, there is a vector in R (B) whose minimum polynomial is ¢. Thus when ¢ and W are of the same
degree we must have ¢ = W, which means v = n. This completes the proof.

LEmmMA 3: If (A,B) is controllable, then

n=v=pC)=d=m

Proor: If (A,B) is controllable then p(C) = n. Since v = n, always, we read from Lemma 1 that v = n.
This being the case, d = m follows from Lemma 2. This completes the proof.

REMARK: From (3), we can have a very direct proof, without Lemma 2, that p(C) = n implies d = m.
For, assume d < m. Then, p(¢) cannot be zero and (3) tells that p(C) =n—1.

Given that the system (1) is controllable with a vector controller, u, it may be possible to control the
system by a choice such as u = Fy, where F is an rak matrix, £ < r, and y is a k-vector. This reduction of
the control space from r to k dimensions, when possible, is of obvious advantage both practically and
theoretically. In particular, since many control problems depend solely upon the property of controllability,
theoretical analysis may be simplified by dealing with the reduced system.

The ultimate in control reduction is the case £ = 1, when F = ¢ is an r-vector and y is a scalar
controller: u(t) = ey (). In this case we inquire for a vector beR (B ) such that the system

x = Ax + by (1)

is controllable whenever the system (1) is controllable. Necessary and sufficient conditions for this follow
readily from the lemmas and are set forth in the following theorem.
THEOREM 2: The following conditions are equivalent.

(1) The pair (A, B) is controllable and A is nonderogatory
(i) d=n
(i) There exists a beR(B) such that (A, b) is controllable.

PrROOF: That (i) implies (ii) follows from Lemma 3 by setting m = n. That (ii) implies (i) follows from
Lemma 1 by setting d = n. If we assume (ii), then by Theorem 1 there is a vector béR(B) whose minimum
polynomial is of degree d = n. It follows that (4, b) is controllable and that (ii) implies (iii). If there exists a
vector b€R(B) such that (A, b) is controllable then that vector clearly cannot have minimum polynomial of
degree less than n. Thus no polynomial of degree less than n can annihilate R(B). Thus d = n and hence d
= n, so that (iii) implies (ii). This completes the proof of the theorem.

In [8], theorem 6, p. 86, it is shown that given the controllability of (1) then (1) is controllable for some
beR(B) if and only if A is nonderogatory. (Observe that we have shown that controllability of (1’) for some
beR(B) implies both that A is nonderogatory and that (1) is controllable) The proof in [8] is very involved
and hinges on extensive Jordan form manipulation. The implications (i) < (iii) can be deduced from a more
general but fairly complicated theorem due to Heymann [4, theorem 2, p. 565]. The implication (i) = (iii)
follows from theorem 2 of [3].
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If we are interested only in Theorem 2, the several quite direct proofs are available. We give one such
alternative proof: That (i) implies (ii) follows at once from the Remark. That (ii) implies (iii) is proved as in
the proof of Theorem 2. Given (iii), we have n = m. For, otherwise b, Ab, . . . , A" 'b would be linearly
dependent as expressed by W(4)b = 0. We also have p(C) = n, since the linear span of b, Ab, . . . , A" b
is contained in R(C). Thus (iii) implies (i).
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